
Da Client/Server a REST

scrivendo meno codice possibile

20 Novembre 2024
Padova

PAOLO ROSSI

twitter.com/awebguy

linkedin.com/in/paolo-rossi-pc

paolo@paolorossi.net

github.com/paolo-rossi

blog.paolorossi.net

WINTECH ITALIA - CTO
SENCHA & EMB. MVP

Delphi JWT
JSON Web Token Library

Delphi Neon
JSON Serialization Library

GITHUB PROJECTS

Linux Daemon
Real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 Library

NATS Delphi
NATS Client Library for Delphi

github.com/paolo-rossi

WiRL
REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/paolo-rossi/nats.delphi
https://github.com/paolo-rossi
https://github.com/delphi-blocks/WiRL

AGENDA
1. Introduction
2. N-tier architecture
3. Migration
4. How to migrate the Delphi code
5. Security

1Introduction

USE CASE SCENARIO
C/S applications n-tier applications

LAN clients LAN clients
Web apps
Mobile apps
Automation apps
IoT gateway/supervisor

➔ C/S apps with direct access (LAN) to the database
◆ A lot of BDE-based applications

➔ Socket communication only for devices
➔ HTTP communication only to interact with some web server
➔ SOAP clients with some third party server

TYPICAL DELPHI APP

➔ App with LAN based DB connectivity
➔ Very rich UI (sometimes too rich!)
➔ UI components attached directly to design-time datasets
➔ A lot of events to glue it all

TYPICAL C/S APP

The very definition of a monolith!

➔ Transition occurred around 2008-2009 for other languages
➔ Delphi apps for the large part are still desktop apps with

direct access to the database

FROM C/S TO N-TIER

An it’s not Delphi’s fault !!

We have to fill the gap!

2N-tier
Architecture

➔ Web apps
➔ Mobile apps
➔ DB-based apps (classic C/S apps)
➔ Automation apps
➔ IoT gateway/supervisor

N-TIER, WHAT FOR?

➔ An n-tier app is essentially an HTTP (TCP, UDP, etc...) service
that listens on a port
◆ Requests are from several client
◆ Requests can be at the same time
◆ At each request the server spawns a thread

➔ The data (object, variables) must be thread-safe
◆ The code that access the data must be thread-safe

N-TIER, WHAT IS IT?

3Thread-Safety

➔ Usually not thread-safe at all!
➔ UI (VCL) it’s not thread-safe by design
➔ Data access and classes better be thread-safe

C/S APPS

➔ Server: No UI (VCL/FMX)
➔ Data access (and classes) must be thread-safe

◆ DataModule, Queries, etc…
➔ Client: UI must synchronize with data (sometimes from

different threads)
➔ Clients usually don’t have multi-thread problems per-se

N-TIER APPS

➔ Local variables/objects are (usually) thread-safe
➔ Global variables/objects are not!
➔ UI components are not (no need to migrate these)
➔ Design-time components (usually) are not!
➔ DataModules? it depends!
➔ Make routines to safely access your variables/objects

◆ Learn (at least) TCriticalSection and TMonitor

IN DETAILS:

➔ In REST services much more “destructive”
➔ First line in *.dpr

◆ ReportMemoryLeaksOnShutdown := True;
➔

MEMORY LEAKS

Thread Safety
Demo:

● Simple Delphi DataModule
● Delphi DataSets
● Lists & Collections
● Global Objects
● Global Variables

4Migration

➔ What to migrate
◆ Data access units (DataModules)
◆ Business logic units (DataModules, other classes)
◆ Utility classes

➔ Migrate or start from scratch?

MIGRATION

➔ Still using the BDE?
◆ FireDAC migration

➔ Not using a DataModule?
◆ Please use a DataModule!

➔ Code is not thread-safe?
◆ Make your DB code thread-safe

DATA ACCESS MIGRATION

90% of your DB code is ready to be migrated to a service

5How to
migrate code

➔ Unit (code) dependencies
◆ GraphViz tools (D12)

➔ A single dependency (a DataModule for example) means
compiling an entire project (forms, utilities, vcl, etc…)

PROJECT DEPENDENCIES

➔ Use complete namespaces (fast compile time)
◆ System.SysUtils, Vcl.Controls, etc…

➔ Order uses clauses by namespaces
◆ System.*
◆ Data.*
◆ Vcl.*/Fmx.*
◆ Libraries
◆ Project’s units

USES CLAUSES

➔ Remove inter-dependencies
◆ Circular references (also in implementation)

➔ Remove unnecessary namespaces
◆ Remove all project forms from DataModules/classes
◆ Remove Vcl.*/Fmx.* from DataModules/classes
◆ Remove WinApi.* from DataModules/classes that might be

compiled in Linux/MacOS/Android/iOS
◆ Keep ordered the uses clauses, move the units that Delphi

keep adding to the bottom

USES CLAUSES

➔ If you have a circular ref between forms and a dm
◆ Create a 3rd unit with the types in common

UNIT DEPENDENCIES

Unit dependencies
Demo:

● Forms
● DataModules
● Units

➔ Variables
◆ Inside classes (form)
◆ fields or class vars

➔ Constants
◆ Inside classes

➔ Functions
◆ Inside classes
◆ Instance methods or class methods

GLOBAL TO LOCAL

Global to Local
Demo:

● Variables
● Constants
● Functions

➔ Objects (singleton)
◆ Implementation reference
◆ initialization/finalization
◆ Lazy creation

➔ Static classes
◆ Collection of functions (utils)
◆ Collection of functionalities

GLOBAL TO LOCAL

Global to Local
Demo:

● Objects
● Static classes

➔ If you can’t go local
➔ Using TCriticalSection or other sync objects

◆ System.SyncObjs
➔ Use TMonitor with objects

GLOBAL SYNC

Global Sync
Demo:

● TCriticalSection
● Other sync objects

➔ Old style lists
◆ TList, TObjectList, etc…

➔ Derived classes with method overrides
◆ Sync in the override methods

➔ New generic classes
◆ Use thread-safe classes
◆ Create thread-safe classes

LISTS & COLLECTIONS

➔ Thread-safe lists are not “magical”
◆ Beware of algorithm composed of multiple methods calls

● Looping through items and adding/deleting/changing
➔ Add Function that return arrays

◆ For filters, sorting, etc…

LISTS & COLLECTIONS

Lists & Collections

● Override methods
● Filtering, sorting

Demo:

➔ Remove any SQL string from the forms
➔ DataModules as data services (functions)
➔ Break the “only” mega DataModule in smaller ones

◆ Share the connection DM
➔ Write thread-safe code in DataModules

FORM TO DATAMODULE

DataModules & Forms

● Functions returning simple values and datasets
● Remove SQL management from Forms

Demo:

4Security

➔ Think about security from day 0
➔ Your service(s) will be accessed from outside the LAN

◆ Meaning: Internet
➔ Never expose your database server
➔ Use REST libraries with known security implementations

◆ Use always JWT as a token that contains client side
information

◆ Learn all about JWT and its use

SECURITY

THANK YOU

